Optimized Differentiation of Mesenchymal Stromal Cells for Vascular Tissue Engineering Applications

Corina Vater1,2, Stefan Zwingenberger1,2, Matthias Schieker3, Klaus-Peter Günther1,2, Maik Stiehler1,2

Corresponding Author: maik.stiehler@uniklinikum-dresden.de

1Department of Orthopedics, University Hospital Carl Gustav Carus, Dresden, Germany, 2DFG Center for Regenerative Therapies Dresden (CRTD), Germany and 3Experimental Surgery and Regenerative Medicine, Department of Surgery, LMU, Munich, Germany

Introduction

Bone marrow-derived mesenchymal stromal cells (MSCs) can differentiate into various cellular phenotypes and are key components for cell-based musculoskeletal regeneration \[1\]. Due to the limited availability and replicative capacity of somatic smooth muscle cells (SMCs), MSCs represent an appealing source of smooth muscle progenitor cells for vascular engineering approaches \[2\]. Therefore, the aim of this study was to evaluate enhancement of MSC differentiation into SMCs by different types of cell culture media.

Materials and Methods

Human immortalized single-cell derived MSCs \[3\] and primary porcine MSCs were cultured in α-MEM containing different concentrations of FCS with and without TGF-β1 for up to 14 days. DNA content was determined to assess cellular proliferation. To evaluate differentiation of MSCs into SMCs gene expression levels of α-SMA, Calponin and SMMHC were analysed by quantitative real-time RT-PCR and normalized to GAPDH expression. Furthermore cell morphology was evaluated qualitatively by light and fluorescence microscopy. Overall statistical significance was defined as \(p < 0.05\) (two-sided) based on all pairwise comparisons using one-way analysis of variance (ANOVA).

Results

Most favourable cell proliferation rates were observed for α-MEM with 10\% FCS and without TGF-β1 (increase in cell number day 1 to day 14, x-fold, hMSCs: 36.9 ± 3.4, pMSCs: 6.0 ± 2.2). In contrast, cultivation of MSCs in medium containing 0.5\% FCS and TGF-β1 lead to significantly lower cellularity observed (increase in cell number day 1 to day 14, x-fold, hMSCs: 6.8 ± 0.9, pMSCs: 1.4 ± 0.4, \(p < 0.05\)). Highest gene expression levels for α-SMA and Calponin were observed by combinations of 5\% and 0.5\% FCS, respectively, and TGF-β1.

Discussion and Conclusions

Differences in combinations and concentrations of cell culture supplements notably influence muscular differentiation of MSCs \textit{in vitro}. Our results indicate that low concentrations of FCS and the presence of TGF-β1 enhance differentiation of MSCs towards the SMC phenotype. These findings will help to support further optimization of vascular engineering strategies for cell-based musculoskeletal tissue regeneration.

References

Acknowledgments

This work was supported by the German Academic Exchange Service/Federal Ministry of Education and Research and by a seed grant of the DFG Center for Regenerative Therapies Dresden (CRTD).