Vascular Therapy for Radiation Cystitis

J. Koudy Williams, Roberto Soler, Alberto Vianello, Claudius Füllhase, Zhan Wang, Anthony Atala, Shay Soker and James J. Yoo. Wake Forest University Institute for Regenerative Medicine, Winston-Salem, NC

Purpose: The underlying pathology of radiation cystitis is cellular and vascular damage followed by increased fibrosis and inflammation. This study was to determine if neovascular-promoting therapy could reduce the pathological changes in the bladder wall associated with pelvic irradiation.

Methods: Adult female Lewis inbred rats were irradiated with a single dose of 20 Gray directed at their bladder. Four weeks later, 30 rats were divided equally into one of three treatment groups for bladder wall injection of: 1) PBS (Control); 2) PBS containing 50 ng vascular endothelial growth factor (VEGF165); or 3) PBS containing 1x10^6 rat endothelial cells (EC). Age-matched non-irradiated rats (n=10) served as untreated controls. At either 1.5 or 3 months following radiation, bladders were analyzed for collagen deposition using Masson’s Trichrome staining of collagen and muscle and vascularization using Von Willebrand factor staining of ECs. Quantitative-PCR was used to examine markers of angiogenesis, hypoxia and fibrosis.

Results: The collagen/muscle ratio was doubled in the Control group 3 months post irradiation (p<0.05 vs. non-irradiated bladders). Both ECs and VEGF inhibited increases in collagen content (p<0.05 vs. Control). Similarly, irradiation reduced bladder wall vessel counts compared to non-irradiated controls (p<0.05) and both ECs and VEGF maintained vessel counts similar to that of non-irradiated controls (p<0.05). PCR analysis showed a higher expression of neovascular markers (CD31, KDR) in the EC and VEGF groups compared to non-irradiated controls (p<0.05).

Conclusions: Angiogenesis therapy may be useful in the prevention and/or treatment of the underlying pathology of radiation cystitis.