Intervertebral Disc Regenerative Therapy: Investigation of Cell Surface-Specific Markers via –omic Profiling and in silico Analysis

Karen A Power¹, Joost Rutges², Laura B Creemers², Sibylle Grad³, Mauro Alini³, Abhay Pandit⁴, William M Gallagher¹

Corresponding Author: Karen.power@ucd.ie

¹School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland ²Department of Orthopaedics, University Medical Center, Utrecht, The Netherlands ³AO Research Institute, Davos, Switzerland ⁴Network of Excellence in Functional Biomaterials, National University of Ireland, Galway, Ireland

Introduction

According to the World Health Organisation, back pain is the leading cause of disability, affecting millions of people worldwide¹. One reason for axial back pain is the degeneration of the nucleus pulposus (NP) at the centre of the intervertebral disc, which is closely correlated to age. We have set out to associate NP cells with cell surface-specific markers different from the other closely related cell types, namely intervertebral disc annulus fibrosus (AF) cells and articular cartilage (AC) chondrocytes, in order to derive NP targets. These targets can be used to direct targeted therapies for cellular regeneration.

Materials and Methods

Human HG U133_2.0 Affymetrix arrays were used for all sixteen samples. The statistical environment R (http://www.r-project.org) and bioconductor (http://www.bioconductor.org) were used for data analysis²,³.

Results

We carried out a DNA microarray experiment on 16 human samples; 6 patients with 3 different cell types minus two AC samples. The global gene expression profiles, as assessed by both hierarchical clustering and principal component analysis, demonstrated a clear divide between the AC and AF and also between the AC and NP samples. However, the AF and NP samples did not separate out and displayed a greater inter-patient similarity over cell type transcriptomic profile.

With this information, transmembrane protein candidates unregulated at the transcript level in NP cells versus AF/AC have been identified (n=90; p<0.01) and are currently being investigated as suitable targets for phage display. RNA-sequencing of the 3 cell types is also an ongoing project, whereby a more in-depth coverage of the transcriptome may reveal more specific NP targets.

Discussion and Conclusions

Gene expression differences between cell types are key in discovering cellular targets, specifically for NP cells, and elucidating the necessary genes for therapeutic delivery. In short, this study will contribute to a larger, global aim of advancing the treatment of lower back pain.

References

Acknowledgments

This material is based upon works supported by the Science Foundation Ireland under Grant No. 07/SRC/B1163. The Conway Institute is funded by the Programme for Third Level Institutions (PRTLI), as administered by the Higher Education Authority (HEA) of Ireland.

Disclosures

Authors have nothing to disclose.